

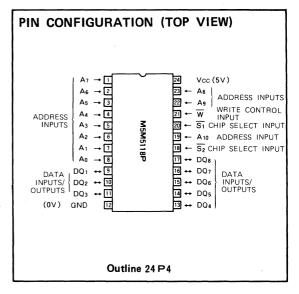
M5M5118P, -15

16384-BIT (2048-WORD BY 8-BIT) CMOS STATIC RAM

DESCRIPTION

The M5M5118P series of 2048-word by 8-bit asynchronous silicon gate CMOS static RAM operates on a single 5V power supply and is designed for easy use in applications requiring battery back-up.

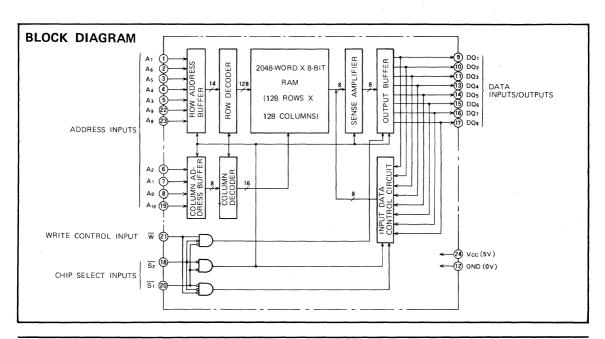
Two chip select inputs, $\overline{S_1}$ and $\overline{S_2}$, are available to provide the minimum standby current with battery back-up. The series is packaged in a standard 24-pin plastic DIL package.


FEATURES

Type name M5M5118P-15 M5M5118P	A	Current consumption				
	Access time (max)	Active (max)	Stand-by (max)			
	150 ns	50mA	15 # A			
	200ns	Jona	1344			

- Single 5V power supply.
- External clock and refresh operation not required.
- Data can be held with 2V supply voltage.
- All inputs and outputs are directly TTL compatible.
- All outputs are 3-state with OR-tie capability.
- Easy expansion of memory capacity with chip select signal.
- Common input/output for data pins

APPLICATIONS


Battery drive, small-capacity memory units with battery back-up

FUNCTION

The M5M5118P series has a 2048-word by 8-bit configuration. It operates on a single 5V supply and its inputs/outputs are directly TTL compatible. Its completely static circuitry obviates the need for external clock and refresh operations and makes it very easy to use. The data of the DQ pin are written when the address is designated by address signals $A_0 \sim A_{10}$, the \overline{S}_1 and \overline{S}_2 signals turn low-level, and the \overline{W} signal is set low.

When for the reading operation the \overline{W} signal is set high, the $\overline{S_1}$ and $\overline{S_2}$ signals are set low, pin DQ is set to the output

M5M5118P, -15

16384-BIT (2048-WORD BY 8-BIT) CMOS STATIC RAM

mode and the address is designated by signals $A_0 \sim A_{10}$, the data of the designated address are output to pin DQ.

When signal $\overline{S_1}$ or $\overline{S_2}$ is set high, the chip is set to a non-select status in which neither reading nor writing is possible. Since the output floats (high-impedance state), OR-tie is possible with the other chip output pins.

The standby mode is established when signal $\overline{S_2}$, or signal $\overline{S_1}$ (with signal $\overline{S_2}$ at V_{CC} or GND), is set to V_{CC} . The supply current is now reduced to the very low level of $15\mu A$ (max) and data in the memory are retained even if the supply voltage falls to 2V, permitting power-down

during non-operation or battery back-up during power failures.

OPERATION MODES

S ₁	S ₂	w	Mode	DQ	Lcc
Х	Н	X	Non-select	High impedance	Standby
Н	Х	Х	Non-select	High impedance	Standby
L	L	L	Write	. D _{IN}	Active
L	L	Н	Read	D _{OUT}	Active

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-0.3~7	V
Vı	Input voltage	With respect to GND	-0.3~V _{CC} +0.3	V
Vo	Output voltage		0~V _{CC}	V
Pd	Power dissipation	Ta = 25°C	700	m W
Topr	Operating free-air ambient temperature		0~70	*c
Tstg	Storage temperature		−60∼150	°C

RECOMMENDED OPERATING CONDITIONS (Ta = 0 ~ 70°C, unless otherwise noted)

Symbol	D		11. 24		
Symbol	Parameter	Min	Тур	Max	Unit
Vcc	Supply voltage	4.5	5	5.5	V
GND	Supply voltage		0		· V
VIL	Low-level input voltage	-0.3		0.8	V
VIH	High-level input voltage	2.2		V _{CC} +0.3	٧

ELECTRICAL CHARACTERISTICS ($T_a = 0 \sim 70^{\circ}C$, $V_{CC} = 5 \text{V} \pm 10\%$, unless otherwise noted)

Symbol	Parameter		To describitions	Limits			
Symbol	raram	eter .	Test conditions	Min	ayT	Max	Unit
V _{IH}	High-level input voltage			2.2		V _{CC} +0.3	V
VIL	Low-level input voltage			-0.3		0.8	V
V _{OH}	High-level output voltage		I _{OH} =-1mA	2.4			V
V _{OL}	Low-level output voltage		I _{OL} =2.1mA			0.4	V,
1,	Input current		V _I =0~V _{CC}			± 1	μА
I _{ozh}	Off-state high-level output of	urrent	$\overline{S_1}$ or $\overline{S_2} = V_{IH}, V_O = 2.4 V \sim V_{CC}$			1	μА
IozL	Off-state low-level output cu	irrent	S ₁ or S ₂ =V _{IH} , V _O =0V			-1	μА
	Supply current M5M5118P-15 M5M5118P	M5M5118P-15	$V_{I}(\overline{S_{1}}) = V_{I}(\overline{S_{2}}) = 0V$ Output pin open		-	45	mA
001		Other inputs = V _{CC}		30	45	mA	
1	(Comply company	M5M5118P-15	$V_{I}(\overline{S_{1}}) = V_{I}(\overline{S_{2}}) = V_{IL}$ Output pin open			50	mΑ
CC2	Supply current	M5M5118P	Other inputs = V _{IH}		35	50	mA
I _{CC3}	Standby supply current		$\bigcirc \overline{S_2} = V_{CC} - 0.2 V$, Other inputs $= 0 \sim V_{CC}$			15	μА
			$\bigcirc \overline{S_1} = V_{CC} - 0.2V$, $\overline{S_2} \le 0.2V$, Other inputs =	o∼Vcc			,
I _{CC4}	Standby supply current		$\overline{S_2} \le 0.2 \text{ V}, \ \overline{S_1} = V_{\text{IH}}, \text{ Other inputs} = 0 \sim V_{\text{CC}}$			2	mA
Ci	Input capacitance (Ta = 25°C)		V _I =GND, Vi=25mVrms, f=1MHz			6	pF
Со	Output capacitance (Ta = 2	?5°C)	V_0 =GND, V_0 =25mVrms, f=1MHz			8	pF

Note 1: Current flowing into an IC shall be positive (no sign).

2: Typical values: V_{CC} = 5V, T_a = 25°C.

16384-BIT (2048-WORD BY 8-BIT) CMOS STATIC RAM

SWITCHING CHARACTERISTICS (Ta = 0 \sim 70°C , V_{CC} =5V \pm 10%, unless otherwise noted) READ CYCLE

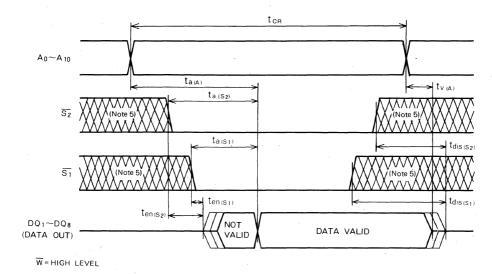
Symbol		N	M5M5118P-15 Limits			M5M5118P		
	Parameter					Limits		
		Min	Тур	Max	Min	Тур	Max	
t _{CR}	Read cycle time	150			200			ns
ta(A)	Address access time			150			200	ns
ta(s1)	Chip select 1 access time			150			200	ns
ta (S2)	Chip select 2 access time			150			200	ns
t _{dis (S2)}	Output disable time from \$1			50			60	ns
t _{dis} (S ₁)	Output disable time from S2			50			60	ns
t _{en (S1)}	Output enable time from S1	15			15			ns
t _{en (S2)}	Output enable time from S2	15			15			ns
t _{v (A)}	Data valid time from address	20			20			ns

TIMING REQUIREMENTS (Ta = 0 \sim 70°C , VCC=5V \pm 10% , unless otherwise noted) WRITE CYCLE

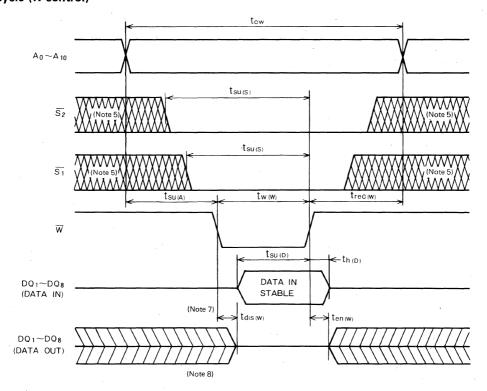
Symbol _.		N	15M5118P-	15				
	Parameter		Limits		Limits			Unit
		Min	Тур	Max	Min	Тур	Max	
tow	Write cycle time	150			200			nn
$t_{w(w)}$	Write pulse width	90			120			ns
t _{su (A)}	Address set-up time	0			0			ns
t _{su (S)}	Chip select set-up time	90			120			ns
t _{su (D)}	Data set-up time	40			60			ns
t _{h (D)}	Data hold time	0			0			ns
t _{rec(w)}	Write recovery time	10			10			ns
t _{dis(w)}	Output disable time from write			50			60	ns
t _{en (w)}	Output enable time from write	15			15			ns

POWER-DOWN CHARACTERISTICS ELECTRICAL CHARACTERISTICS (Ta = 0 ~ 70°C, unless otherwise noted)

Constant	2	Test conditions		Unit		
Symbol	Parameter	rest conditions	Min	Тур	Max	Onit
V _{CC} (PD)	Power-down supply voltage		2			V
		2.2V≦V _{CC (PD)}	2.2			V
V _I (S)	Chip select input voltage	2V≤V _{CC (PD)} ≤2.2V		V _{CC} (PD)		٧
ICC (PD)	Power-down supply current	V _{CC} =3V, Other inputs=3V			10	μА

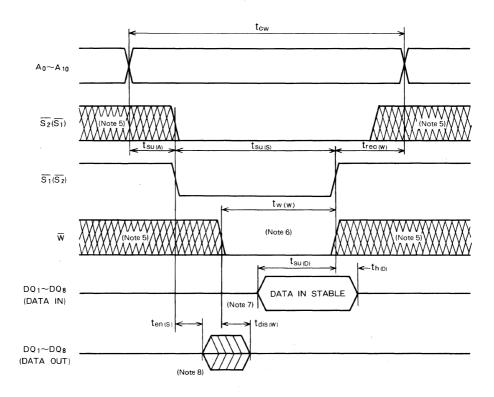

Note 3: When $\overline{S_1}$ or $\overline{S_2}$ is operated at 2.2V (V_{IH} min), the supply current at which V_{CC (PD)} is between 4.5V and 2.4V, is specified by I_{CC4}.

TIMING REQUIREMENTS ($T_a = 0 \sim 70^{\circ}C$, unless otherwise noted)


Chambral		Total and distant	Limits			
Symbol	Parameter	Test conditions	Min	Тур	Max	
t _{su(PD)}	Power-down set-up time		0			ns
t _{rec (PD)}	Power-down recovery time		t _{CR}			ns

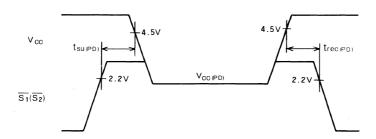
16384-BIT (2048-WORD BY 8-BIT) CMOS STATIC RAM

TIMING DIAGRAM Read cycle



Write cycle (W control)

16384-BIT (2048-WORD BY 8-BIT) CMOS STATIC RAM


Write cycle (\$\overline{S}\$ control)

Note 4: Test conditions Input pulse level: 0.4 ~ 2.4V Input pulse risetime and falltime: 10ns Load: 1TTL, C_L = 100pF Reference level: 1.5V

- Note 5: Hatching indicates the don't care inputs.
 6: Writing is performed while \overline{S} and \overline{W} are in the low-level overlap period.
 7: The output is kept in the high-impedance state when \overline{W} falls simultaneously with, or before, the \overline{S} fall.
 8: An reverse-phase signal should not be supplied when pin DQ is in the output mode.

POWER-DOWN CHARACTERISTICS

